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The gravitational settling of aerosol particles in 
homogeneous turbulence and random flow fields 
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(Received 25 November 1985 and in revised form 6 June 1986) 

The average settling velocity in homogeneous turbulence of a small rigid spherical 
particle, subject to a Stokes drag force, is shown to depend on the particle inertia 
and the free-fall terminal velocity in still fluid. With no inertia the particle settles 
on average a t  the same rate as in still fluid, assuming there is no mean flow. Particle 
inertia produces a bias in each trajectory towards regions of high strain rate or low 
vorticity, which affects the mean settling velocity. Results from a Gaussian random 
velocity field show that this produces an increased settling velocity. 

1. Introduction 
A primary question in the study of aerosol-particle motion is the effect of 

turbulence on the average settling velocity of the particles. This affects such things 
as the residence time of aerosol contaminants in the atmosphere and the growth rate 
of water droplets falling under gravity. In  still fluid, away from confining walls, it 
is relatively straightforward to determine the terminal fall speed under gravity. 
Extensive measurements have been made for particles of both spherical and 
non-spherical shape over a wide range of sizes, and these results are well summarized 
for example by Clift, Grace & Weber (1978). In  a turbulent flow an aerosol particle 
is subject to fluctuating drag forces produced by the turbulent velocity fluctuations 
in the surrounding fluid. I ts  motion is also determined by the effects of gravitational 
settling and inertia of the particle, while such effects as Brownian motion are not 
significant if the particle is large enough. It is not clear what the effect of these 
fluctuating forces will be on the ensemble-averaged settling velocity, and whether or 
not in the absence of a mean flow in homogeneous turbulence the particles will settle 
asymptotically at the same rate as they would in still fluid. 

Most attention in the past has focused on the dispersion of particles by turbulence, 
and the question of settling velocities has largely been ignored. Theoretical work in 
this area has been done by Tchen (1947), Yudine (1959), Csanady (1963), Meek & 
Jones (1973), Reeks (1977,1980) and Nir & Pismen (1979). It was Yudine (1959) who 
noted the ‘ crossing-trajectories effect ’ for particles settling under gravity, whereby 
particles move relative to the surrounding fluid and cross the Lagrangian trajectories 
of fluid elements. The net result is for the velocity autocorrelation of the particles 
to decay more rapidly than for fluid elements and for the dispersion to be reduced. 
Csanady (1963) further showed that, for rapidly settling particles, the turbulent- 
dispersion coefficient in the vertical direction may be up to twice that  in the 
horizontal direction owing to the ‘continuity effect ’ in incompressible turbulent flow. 
The papers by Tchen, Meek & Jones, Reeks and Nir & Pismen have studied the 
influence of particle inertia on the turbulent-dispersion process based on various 
models or closure assumptions. Experiments by Snyder & Lumley (1971). and by 
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Wells & Stock (1983) have generally confirmed the conclusions of these studies, as 
have the numerical simulations of Riley (1971), Riley & Patterson (1974), and Reeks 
(1980). These experiments and simulations were primarily for particles either with 
settling velocities large compared with the level of the turbulent-velocity fluctuations 
or zero settling velocity. No change in the settling velocities due to the turbulence 
was reported in these. 

Reeks (1977) has argued that in homogeneous turbulence there would be no net 
effect on the average settling velocity. Indeed, in the absence of particle inertia it 
may be established, as shown in the next section, that for homogeneous, stationary 
turbulence the average particle velocity is just the sum of the terminal fall velocity 
in still fluid and the Eulerian mean flow velocity. On the other hand, a recent study 
by Maxey & Corrsin (1986) has shown that owing to the influence of particle inertia, 
particles in a random cellular flow field may settle out significantly more rapidly than 
in still fluid. In  this study the flow field was two-dimensional, incompressible and 
periodic in both xl, x2 coordinates with a stream function 1/. 

$(XI, x2) = U, L sin (2) sin (2) 
In each realization of the experiment a spherical Stokes particle was introduced at 
some random location and the direction of the gravitational acceleration g was 
selected at random in the (x,,x,)-plane. The subsequent particle motion was 
computed by numerically integrating the equations of particle motion, and the 
components of particle velocity parallel and perpendicular to g were recorded. 
Averages were then made over a large number of realizations of the experiment. If 
W(") denotes the Stokes settling velocity in still fluid, the increase in settling rates 
was most pronounced for W(")/U0 ,< 1 but was negligible for W(")/U, > 2. Particle 
inertia also had the surprising effect of causing particles, for a given direction and 
value of g, to accumulate along isolated and well-defined curves. 

The aim of this paper is to investigate whether in general particle settling velocities 
in homogeneous, stationary turbulence differ from those in still fluid, and in 
particular to investigate the role played by particle inertia. In the following section 
the problem is formulated more precisely, then in $3 results are given from numerical 
simulations of particle motion in a Gaussian, random velocity flow field. These results 
are then considered in terms of various asymptotic limits of either rapid settling or 
weak particle inertia. 

2. Aerosol-particle motion 
2.1. Equation of particle motion 

The equation of motion for a small spherical aerosol particle of radius a and mass 
m p  is 

where Y(t), V( t )  are the position and velocity of the particle, g is the acceleration due 
to gravity and ,u is the dynamic viscosity of the surrounding fluid. The flow field 
u(x, t )  of the surrounding fluid is incompressible. The equation represents a balance 
of particle inertia and acceleration, with the fluid drag force produced by the motion 
of the particle relative to the surrounding fluid and the force due to gravity. A Stokes 
drag law has been assumed in (2.1) and this is appropriate if the particle size is 
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sufficiently small that  the Reynolds number for the relative motion of the particle 
through the fluid is significantly less than one. The particle is also assumed to be 
much smaller than the lengthscales associated with the flow field u(x,t). I n  a 
turbulent flow this leads to the condition that a 4 rK, where rK is the Kolmogorov 
microscale, Maxey & Riley (1983). For an aerosol particle, such as a water droplet 
in air, the density of the particle is much greater than that of the surrounding fluid 
so that buoyancy forces, added-mass and other effects are negligible while the 
particle-inertia term may still be significant. The particle is further supposed to be 
sufficiently large that Brownian motion is negligible. Particle concentrations or 
number density will be assumed to be very low, so that the particles move 
independently of each other and do not modify the flow field. Despite the restrictions 
that have been imposed, (2.1) is applicable to many different aerosol problems: in 
air flows under most atmospheric conditions (2.1) would apply for example to aerosol 
particles in the range 2 pm < a < 30 pm (Pruppacher & Klett 1978). 

The equation of motion (2.1) may be divided by the particle mass and written in 

(2.2) 
the form 

~ = a(u( Y(t) ,  t )  - V( t )  + W)), d V  
dt 

where we have introduced the Stokes settling velocity WS), the terminal fall velocity 
in still fluid. 

and a, the response ‘frequency’ of the particle to changes in the flow conditions 
surrounding the particle, 

(2.4) 
6nap 

*P 

a = -. 

The problem of interest is to determine the ensemble-averaged velocity ( V ( t ) )  of a 
particle in a turbulent flow. I n  statistically homogeneous and stationary turbulence 
this average will reach some asymptotic stakonary value, long after the particle 
release. From an average of (2.2) this asymptotic value must satisfy, as t + 00, 

( V ( t ) )  = w(” + (u( Y( t ) ,  t ) ) .  (2.5) 

The average (u( Y(t) ,  t ) )  is the ensemble-averaged fluid velocity as measured following 
a particle trajectory. Both the velocity field u and the particle position Y exhibit 
statistical fluctuations, and this average differs in nature from both a Eulerian, 
fixed-point average and a Lagrangian average following a fluid element. Whether or 
not the turbulence has a net effect on settling rates depends on whether or not this 
average is equal to the Eulerian mean fluid velocity U0). 

2.2. Settling in the absence of particle inertia 

If particle inertia is completely neglected (2.2) simply reduces to the statement that 
the particle velocity is the sum of the still-fluid settling velocity and the instantaneous 
velocity of the surrounding fluid. This may be written as 

_ _  d Y  1 V(t )  = v( Y(t)% t ) ,  
dt 

u(x,  t )  = u(x ,  t )  + W“), (2.7) 

where we have introduced v ( x ,  t)  as a ‘flow field’ for the particles. As WC”) is simply 
a constant and the fluid flow field is incompressible it follows that u(x,t) is also 

15 YLM 174 
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incompressible. The equation for particle motion (2.6) however now has the same 
form as a Lagrangian material element moving in the 'flow field' u(x,t). Lumley 
(1962) (see also Tennekes & Lumley 1972) has shown that for homogeneous and 
stationary turbulence in an incompressible flow the one-point Eulerian statistics 
and the one-point Lagrangian statistics of the flow field are equal. The immediate 
conclusion is then that (V( t ) )  equals the Eulerian mean value of u,  namely 

( V ( t ) )  = u(0) + P). (2.8) 

Thus if there is no inertia the turbulence itself has no net effect on the settling rate, 
and any effect necessarily requires the influence of particle inertia. 

The same conclusion may also be drawn if the Stokes drag law (2.1) is replaced 
by a more general, nonlinear drag law dependent on the instantaneous Reynolds 
number of the relative motion. I n  terms of a dimensionless drag coefficient C,, 
dependent only on the Reynolds number R, the equation of particle motion for 

0 = - - ,  t c D  ( R)7Cu2plW(t)lw(t)+mpg, ( 2 . 9 ~ )  negligible inertia is 

w(t) = V ( t ) - U (  Y(t) ,  t ) .  

2a.pl w ( t )  1 B =  
P 

where p is the density of the surrounding fluid. 

(2.96) 

( 2 . 9 ~ )  

The modulus of ( 3 . 9 ~ )  gives then 

constant; (2.10) 

implying that the Reynold number R and the drag coefficient CD are constant. As 
with the linear Stokes drag law the particle velocity a t  any instant is the sum of the 
local, instantaneous fluid velocity U( Y ( t ) ,  t )  and the constant, terminal fall velocity 

(2.11 a,) 

(3.1 1 6) 

The motion of each particle is determined as before by (2.6) and (2.7), with WT) 
replacing Wc", and the argument follows as before. Throughout the rest of this paper 
the Stokes drag law as in (2.1) will be assumed, but for more general drag-law 
relationships qualitatively similar results may be expected to apply. 

2.3. Scalings for isotropic, homogeneous turbulence 
The conditions under which particle inertia is important depend on the scales of the 
turbulent flow field compared to the inertial response frequency a. Attention will be 
restricted to statistically stationary, homogeneous and isotropic turbulence with zero 
mean flow, U0) = 0. The fluctuations in fluid velocity will be scaled by u' defined in 
terms of the mean-square velocity fluctuation 

(2.12) 

The lengthscale L is defined in terms of the energy-spectrum function E ( k )  for 
isotropic turbulence, defined in the usual manner (Batchelor 1953) so that 

u'2 = (u; (x, t ) ) .  

$(u; (x, t ) )  = IOrn E ( k )  dk. (2.13) 
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The length L is chosen to be l / k * ,  where k, is the wavenumber at which E(k)  has 
a maximum. The scale L is thus characteristic of the larger, energetic eddies. 

We also introduce for future reference the Eulerian, two-point, space-time 
correlation for homogeneous, stationary turbulence 

Rij( r ; 7) = ( ui( x, t ) uj( x + r, t + 7)), (2.14) 

which for isotropic turbulence has the general form 

where r = Irl. The condition of incompressible flow implies that 

(2.16) 

The generalized spectrum tensor G , ( k ; w )  is defined as the Fourier transform of 

Gig(k;w)  = (ZX)-~ JJJYrn d3r edk" JPrn d7 edw7 Rij(r ; 7) (2.17) 

(2.18) 
Qi,j(k;w) = " ' k , w ) p i j - + q ,  k . k  

where k = lkl. The condition of compressible flow is satisfied by (2.18), requiring 

Qitj k j  = k, Gtj = 0. (2.19) simply that 

The standard spectrum tensor Yij(k)  is defined as the spatial Fourier transform of 
Rij(r;r = O),  which may have derived from a knowledge of Q g j ,  

Y*Yk) = I Gtj (k;  w )  dw. 

Rij(r,7) and is 'x 

which for isotropic turbulence has the form 

00 

-m 

From Y, the standard expression for the energy-spectrum function is 

where the integration is over spherical surfaces of radius k in wavenumber space. In  
terms of the function # ( k , w )  m 

E(k)  = 4xk2 r#(k,w) dw. (2.20) 

The equation of particle motion may be scaled in terms of u' and L,  and the 
following dimensionless variables introduced : 

X Y v* = - V u* = - U 
u't y* = - 
L '  L' L'  U ! '  U' * 

t *=-  x * = -  

The resulting equation of motion is 

- u*( Y*(t*), t * ) -  V*(t*) + w. (2.21) 1 dV* 
A dt* 

The governing dimensionless parameters are the dimensionless settling velocity for 

w@) still fluid 
w=-- 

u' ' 
(2.22) 

15-2 
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and the dimensionless inertia parameter 

(2.23) 

The importance of particle inertia in a given situation is determined by the value of 
A .  When A is large the inertia term is small and the particle responds rapidly to 
changes in the surrounding flow field. While if the value of A is small the particle 
inertia has a strong influence on the particle motion. 

The scaled equation of motion (2.21) will be used henceforth and the asterisks will 
be suppressed. The motion of an individual particle is found by solving 

- u( Y(t),  t )  - V(t)  + w, 1 d V  
A dt 
_- - (2.24) 

subject to initial conditions for Y(t = 0) and V(t = 0). 

3. Numerical simulations in a Gaussian random flow field 
Following the methods used by Kraichnan (1970), Riley (1971) and Reeks (1980), 

we have computed the motion of aerosol particles in an incompressible, random flow 
field generated as a series of randomly selected Fourier modes. This technique is 
simpler than direct numerical simulations of turbulence (Riley & Patterson 1974), 
yet provides useful information. The joint velocity statistics of the resulting flow field 
are Gaussian, thus once the two-point correlations are specified all other statistical 
information may be derived. By suitable mode selection procedures it is possible to 
generate a statistically stationary, homogeneous and isotropic random flow with a 
prescribed two-point correlation R&, 7). Unlike a genuine turbulent flow the triple 
correlations vanish and there is no representation of the energy transfer from large 
scales to smaller dissipative scales or of the advection of small-scale turbulent 
motions by the larger eddies. This is not serious if the range of lengthscales that are 
energetic is limited, as for the energy spectrum used here. 

3.1. Simulation method 
For each run of the simulation a flow field is generated as a sum 

N 

n = 1  
u&x, t )  = Z {bin) cos (k (n )*x+w(n) t )+c jn )  sin ( k ( n ) * x + w ( n ) t ) } ,  (3.1) 

where N modes, typically 64, are selected independently and a t  random. First for 
each n, k(n)  and dn) are chosen independently with probability-density functions 

(3 .2a)  

(3 .2b )  

Secondly real coefficients Sin) and c"ln) are selected independently and at random 
according to a Gaussian probability function with zero mean and unit covariance 

(3.3) 
matrix, so that on average (6 in )6 jn ) )  = Sii, 
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with a similar result for tj.1. Finally the coefficients are filtered and scaled according 

to obtain the final coefficients. The filtering procedure ensures that b(n).k(n) and 
c(n)*k(n) vanish, so that overall the flow field is incompressible. Furthermore, by 
averaging over a large number of different runs we generate a flow field that 
statistically is stationary, homogeneous and isotropic. The velocity statistics are 
Gaussian provided N is large enough. 

A suitable choice of the scaling function T(k ,w)  allows a random flow field to be 
generated with any prescribed two-point correlation. Since each mode is generated 
identically yet independent of the others, the averaged two-point correlation is 

R,(r;7) = Nfffa --OD d3kfm -a2 d w { p , ( k ) p , ( w ) T 2 ( k , w ) [ 6 , i - ~ ]  c o s ( k . r + w ~ )  

obtained by evaluation of (2.14) from the series (3.1) and the properties of the 
coefficients. A comparison with (2.17), (2.18) for Qij(k;w) shows that 

N k w )  = NPl(k)P,(@) r 2 ( k > w ) .  (3.6) 

For the simulations reported here the scaling function r was chosen to be 

(2N) -4k 
T(k ,w)  = -, 

k, 

corresponding to  a choice of the energy-spectrum function 

(3.7) 

This choice of energy spectrum has also been used by Kraichnan (1970) and Reeks 
(1980). The function E ( k )  in (3.8) has a maximum a t  k = 2k,, so in view of the 
non-dimensional scalings in terms of k, the value k, = f is assigned. For this selection 
of T(k ,o)  some standard correlations are 

R,,(r,0,0;7 = 0) = f ( r , 7  = 0) = exp(-ik8r2) (3.9) 

for the longitudinal spatial correlation, and 

R,, (r = 0;  7 )  = exp ( - + ~ , 7 ~ ) ,  (3.10) 

for the Eulerian time correlation. The corresponding integral lengthscale for (3.9) L, 
and the corresponding Eulerian integral time scale TE are 

(2R)f  

2w0 
L, = (2~) ; ,  TE = -. (3.11) 

For each run of the simulation a random flow field (3.1) is generated as described 

(3.12) 

The particle motion is found by numerically solving (2.24), evaluating u( Y(t) , t )  from 
(3.1) as required. This procedure is repeated so that each sample contains 1000 
particles and averages for the velocity statistics are obtained by summing over all 
the particles. The computations were made to  a t  least t = 15 and the asymptotic, 

above and a particle is released at the origin a t  t = 0 with the initial conditions 

Y(t = 0) = 0, V(t = 0) = w. 



448 M .  R. Maxey 

< v,> 

- 

1.6 - 

1.2 - 

0.8 - 

0.4 - 

- 

I- I I I I I I I I 
0 0.4 0.8 1.2 1.6 

W 

FIGURE 1. Simulation results for asymptotic average settling velocity ( V,) against still-fluid 
settling velocity W ;  inertia parameter A = 1 and w,, = 0:  0, (V,) ; 0, increase in settling velocity 
(6)- W .  Error bars show possible statistical error within one standard error of the mean. 

steady-state statistics were estimated by further time-averaging the values between 
t = 6 and 15. Tests were made to  ensure accuracy and convergence of the results, 
as well as to verify the Gaussian statistical properties of the flow field. In  various 
instances, experiments were repeated several times to further reduce statistical 
errors. The differential equations were solved using the ISML subroutine DGEAR 
as a variable-order, variable-step-size, Adams predictor-corrector method (Rice 
1983). The computations were carried out in double precision on the Brown 
University IBM 3081 computer. 

3.2. Simulation results 
Figure 1 shows the variations in the asymptotic average settling velocity ( V3> for 
different values of the still-fluid settling velocity W ,  with the inertia parameter 
A = 1 .  The flow field is static in time, with w,, = 0 and an infinite Eulerian integral 
timescale TE. In  all the simulations the still-fluid settling velocity W was taken to 
be in the x3 direction. Since the flow field is statistically isotropic, this is the only 
preferred direction in determining the average velocity statistics, and the results thus 
depend only on whether the velocity component is parallel or perpendicular to W. 
Indeed ( V,) and (V,) were found to be zero to within statistical-error limits. From 
figure 1 the particles, for W < 1 ,  settle on average with a velocity about 10 % greater 
than in still fluid. The increase is greatest at around W = 1 and decreases as W tends 
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FIGURE 2. Simulation results for average settling velocity ( V3) against inertia parameter A ; 
still-fluid settling velocity W = 1 and wo = 0: 0, (K).  Statistical error bars are for one standard 
error. 

to zero or as W increases beyond W = 1 ,  being negligible for W 2 2. Symmetry 
arguments imply that (V,) should vanish when W is zero. 

Figure 2 shows the influence of the inertia parameter A on the average settling 
velocity for the fixed value of W = l ,  again for the static flow field with infinite 
Eulerian timescale. TE. The increase in settling velocity is seen to  persist over a wide 
range of values of A ,  but falls off both in the limit of strong inertia, A+O, or of weak 
inertia, A +  CO. Figure 3 shows the effect of varying the Eulerian integral time scale 
T E ,  or equivalently by (3.11) of varying wo. 

For large values of A the particle responds quickly to changes in the surrounding 
flow field and behaves much as if there were no inertia, in which case from $2.2 
(V,) = W .  For small values of A ,  the particle inertia produces a lag in the response 
and reduces its magnitude so that the changing flow has less influence on the particle. 
An increase in the still-fluid settling velocity W or a reduction in the Eulerian 
correlation time TE both tend to increase the rate a t  which the surrounding flow 
conditions change and particle inertia, for a fixed value of A ,  limits the response to  
either. Thus for example in the limit wo+ 03, i.e. TE+O, the value of (V,) should 
tend to W .  

Further information is provided by the mean-square velocity fluctuations for both 
the particle velocity V ( t )  and the velocity of the particle relative to the fluid 

w(t )  3 V( t ) -u (  Y ( t ) , t ) .  (3.13) 

From (2.5) and (2.24) the long-term average value of w(t )  is 

(3.14) 

where the subscript 03 emphasizes the asymptotic value. Long after the particle 
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FIQURE 3. Variation in simulation results for ( V , )  with time-scale parameter wo; inertia parameter 
A = 4, still-fluid settling velocity W = 1 : 0, (V,). The Eulerian integral time scale TE K l/w0,  see 
(3.11). Statistical error bars are shown. 

release w(t), V(t) ,  u( Y(t) , t )  will all be statistically stationary and the fluctuations w’ 

( 3 . 1 5 ~ )  
and V‘ may be defined as 

(3 .15b)  

w,(t) = w(t)- w, 
V(t)  = V(t )  - ( V(t ) ) , .  

Subtraction of the long-term average values from the equation of particle motion 
(2.4) gives 

= - w’(t) 
1 dV‘ 
A dt 
___ (3.16) 

Particle accelerations are finite, so we expect that the mean-square fluctuations in 
w’ will decrease rapidly with increasing values of A. 

Figure 4 shows the values of the mean-square particle-velocity fluctuations for 
A = 1 and varying values of W .  The level of these fluctuations all decrease with 
increasing W for the qualitative reasons mentioned in the last but one paragraph, 
while the level of the fluctuations in the relative velocity w’ increases. Figure 5 shows 
the effect of varying particle inertia for W = 1 .  As the value of A increases the level 
of particle-velocity fluctuations increases markedly, tending to a value of 1 .O.  The 
arguments of 52.2 for motion in the absence of inertia may be extended to show that 
in the limit, A +  a, 

On the other hand the level of the relative velocity fluctuations decreases rapidly 
with increasing values of A .  This is in accord with the comments above and (3.16); 
and often on the basis of small values of (w’(t)z) inertia would be deemed to be a 

(Vi ( t )Z)  = (Vi( t )Z)  = ( V ; ( t ) 2 )  = (u : (x , t ) ) .  
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FIGURE 4. Simulation results for asymptotic mean-square particle-velocity fluctuations against 
still-fluid settling velocity w'; A = 1 and oo = 0: 0, (S.;'+ V;'); 0. (Ti'); A, (w'*w'>. 
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FIGURE 5. Simulation results for asymptotic mean-square particle-velocity fluctuations against 
inertia parameter A ;  u'= 1 and wo = 0:  0, (1';*+ IT;')>; 0, ( IT:'): A, (dew'). 
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negligible effect. However, while ( ~ ' ( t ) ~ )  decreases by a factor of about 13 between 
A = 1 and 8 the value of the average settling velocity (4) remains almost the same 
at about 8 or 10 "4 above the still-fluid value. 

I n  a number of these simulations the flow field has been taken to  be time- 
independent, with wo set to  zero and the Eulerian integral time scale TE infinite. This 
helps partly to mitigate the short'comings of the random-flow-field method. In  
genuine turbulence the Lagrangian motion of fluid elements becomes uncorrelated 
after a timescale of O(L/u') ,  while the influence of the small eddies decays over a 
time-scale comparable with the small-eddy turnover time. For the static random flow 
fields, where the eddies are essentially frozen in place, the Lagrangian motion 
becomes uncorrelated over a timescale of O(L/u') as the fluid element wanders 
through the varying spatial structure of the flow field. The influence of the small 
eddies decays much more rapidly, being determined now by the time that a large 
eddy sweeps the fluid element through the small-scale eddy. If T E  is finite the 
Lagrangian correlation timescales in the random flow field are reduced and the 
motion of a fluid element becomes uncorrelated more quickly than if TE were infinite. 
This accentuates the already rapid loss of correlation for the influence of the small 
eddies. I n  view of this the closest connection with turbulent flows probably comes 
with TE large or infinite. 

The simulation results provide conclusive evidence that the particle settling rates 
may be modified by the flow field, a t  least for the homogeneous random flow fields 
considered here. We may expect similar effects to occur in genuinely turbulent flows, 
but this remains to be verified and is presently being investigated. The problem 
remains, though, of establishing a mechanism responsible for this effect. To this end 
we now examine some asymptotic limits, first for a rapidly settling particle, W 9 1 ,  
considered in the next section; and secondly for weak particle inertia, A 9 1 ,  
considered in a later section. Our first aim is to establish on theoretical grounds that 
such a modification in settling rate should be found. Our second aim is to indicate 
the mechanism involved, for which a t  the end we use a combination of both 
asymptotic approximations. 

4. Asymptotic analysis for rapid settling 
4.1. Expansion method 

I n  the limit of rapid settling, W + 1 ,  the primary motion of the particle is to fall 
vertically along a straight-line trajectory. The influence of the flow field is then to 
produce perturbations to this basic motion. The equation (2.24) for the particle 
motion may be solved in terms of a perturbation expansion based on inverse powers 
of W, 

where formally G = 1/ W and terms are ordered according to their relative magnitude. 
The local fluid velocity is expanded in a Taylor series about Fo)(t) and the velocity 
derivatives are evaluated a t  x = Po)((t), a t  time t .  The Taylor expansion allows the 
perturbation to be found explicitly and expressed eventually in terms of Eulerian 
data. The expansion is valid if I Y'J, the departure of Y from Fa), is small compared 
to the lengthscale L of the flow field. As the particle settles rapidly with velocity W 
one may estimate in a qualitative sense an 'apparent frequency ' a t  which the local 
flow field is changing as W@)/L ,  in dimensional form. So the effect on Y' of the 
fluid-velocity fluctuations of O(w') is of order O(u'L/ W @ ) ) ,  which is O ( L /  W )  and small 
compared to L. The original scalings are retained in the equation of motion, since 

Y(t) = P * ) ( t ) + E Y ( l ) ( t ) + € * Y ( 2 ) ( t ) + € 3 F 3 ) ( t ) +  ... ) (4.1) 
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these are the scales for the flow field u(x ,  t ) ,  and no attempt is made to rescale in terms 
of W. The parameter c is used purely in a formal sense to identify terms of similar 
magnitude : to evaluate the final results c is set equal to one. In  the light of the above 
comments the fact that  Y(l) is O( 1/  W )  will emerge naturally from the solutions. 

Substitution of (4.1) into the equation of particle motion and the collection of the 
terms leads to a hierarchy of equations to be solved successively: 

= Ui( P”(t),t) = Ui(t) ,  
1 d2Y11) dYil) +- 
A dt2 dt 
-- (4.3) 

(4.5) 

-- 1 d2Yi4) +-- dYi4) - Yj”((t) w+ Yjl)(t) y p ( t ) ? m  
A dt2 dt axj axj ax, 

where we have introduced the notation ut(t) as in (4.3) to denote the velocity field 
evaluated a t  Po)(t) .  These equations are solved subject to the initial conditions (3.12) 
as used in the simulations. The resulting solutions are given in Appendix A. 

4.2. Average settling velocity 

The long-term, asymptotic settling velocity (V(t)) can be found by averaging 
(4.2)-(4.6) and summing the various contributions. Long after the particle release the 
velocity statistics are stationary and the average particle acceleration tends to zero. 
The average of (4.2) gives the long-term result 

(4.7) 

so to leading order the average settling velocity is equal to the still-fluid settling 
velocity. Next an average of (4.3) gives 

(T) = (ut(x = Wt,t)), 

substituting for P0)(t) from Appendix A. This is simply the Eulerian averaged mean 
fluid velocity, which is constant and for the purposes of the present discussion is set 
to zero. The average of (4.4), using the results of Appendix A, gives the long-term 
result 

(4.9) 

For homogeneous, incompressible turbulence the velocity-correlation term in the 
integrand vanishes and this contribution to the average settling velocity is zero. 
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W 

FIGURE 6. Comparison of the asymptotic estimates for the increase in average particle-settling 
velocity (&)- W with the simulation results as still-fluid settling velocity u' varies; w0 = 0: 0, 
simulation results for A = 1; 0, simulation results for A = 2 ;  --, asymptotic estimates as 
labelled. Some statistical error bars are shown. 

The first non-trivial contribution to  the settling velocity comes at third order with 
the V3) term. The long-term average of (4.5) eventually gives the result 

using the results of Appendix A and the property of homogeneity. For a Gaussian 
velocity field, as in the simulations of the previous section, this three-point velocity 
correlation is zero since all odd-order correlations must vanish. I n  a general turbulent 
flow it  will be non-zero and will contribute to the average particle-settling velocity. 
Its general form involves the fluid velocity a t  three distinct points evaluated a t  
separate times and its specification requires knowledge of the three-point, space-time, 
triple velocity-correlation tensor. I n  general terms the effect of this contribution 
depends on the mechanisms of nonlinear energy transfer to small scales and the 
production of small-scale velocity fluctuations. 

To obtain the first non-zero term that can be compared with the numerical 
simulations of 93, we must turn to the contribution from f14) and the long-term 
average of (4.6) for (d Yi4)/dt). The specific evaluation ofthis term is quite complicated ; 
the results are summarized in Appendix B. The contribution to the average settling 
velocity again is non-zero and involves four-point, fourth-order velocity correlations. 
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FIGURE 7. Asymptotic estimates for average settling velocity (&) as inertia parameter A varies; 
W = 1 and o,, = 0;  -, rapid settling; ----, rapid settling and weak particle inertia (see $6). 

For the Gaussian velocity field these correlations may be expressed as combinations 
of the second-order velocity correlation. This simplification is used in Appendix B 
and leads to  the final result given by (B 7) .  This has been evaluated for the correlation 
functions f(r, 7) and g(r ,  T )  as used in the simulations described in 93, 

f ( r ,  7) = exp ( -4kir2)  exp ( -!pi72), (4.11) 

g(r ,  7 )  = ( 1  -ik,2r2)f(r, 7 ) .  (4.12) 

Figure 6 shows a comparison of these estimates of the average particle-settling 
velocity with the actual simulation results of the previous section. The estimates 
show the same basic trends although they do not agree closely with the simulations. 
The comparison improves for larger values of W ,  as may be expected for the 
asymptotic expansion, but for W larger than 2.0 the increase in settling velocity is 
quite small and the simulation results are subject to  too much statistical error to 
make a close comparison. Figure 7 shows how the asymptotic estimate of average 
settling ve1ocit)y varies with the inertia parameter A .  The estimated increase in 
settling velocity is greatest around A = 2 to 5, again in the qualitative agreement 
with the simulations. Finally, figure 8 shows the influence of the correlation timescale 
TE on these estimates. As may be expected the value of (dYp)/dt) decreases for 
shorter correlation times, although there is a weak maximum around w = 0.2. 
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FIGURE 8. Asymptotic estimates for average settling velocity ( V ) ,  as timescale parameter wo 
varies; W = 1 and A = 2. The Eulerian integral timescale TE cc l /wo ,  see (3.11). 

These asymptotic estimates exhibit the same basic trends as found in the 
simulations and indicate that the mechanism responsible for the increase in particle- 
settling velocity has been captured, at least approximately, by this expansion. The 
results for (d Yi3)/dt) in (4.10) and (dYi4)/dt) in Appendix B in their present form 
do not provide an obvious intuitive explanation. To get a better understanding of 
these results we turn to a different asymptotic approximation based on the limit of 
small particle inertia, A $- 1 .  In the next section this analysis is developed without 
other assumptions, and then finally is combined with the approximation for rapid 
settling to compare with the results here. The results of (4.10) and,Appendix B could 
be expanded directly for A $- 1 a t  this stage, but their interpretation would not be 
as clear. 

5. Asymptotic analysis for small particle inertia 
For many applications and certainly for most atmospheric contexts the particle 

inertia is small, so i t  is valuable to investigate the asymptotic approximation for 
A $- 1 .  The most direct way to proceed is to formulate the equation of particle motion 
(2.24) as a nonlinear integral equation for Y(t) and then to expand this by integrating 
by parts. In  integrated form the equation of particle motion is 

I r t  
Y(t) = Y(t = O ) + ~ ( V ( t = O ) - W ) [ [ l - e e - A t ] + W t +  Is(t’)[l-e-A(t-t’)]dt‘, (5.1) 

A 
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where a(t) = u( Y(t),t). 

Integration by parts then yields 

457 

(5 .2)  

A 
1 
A 

Y(t) = Y(t=O)+-(V(t=O)-W)+ Wt+ 

1 1 1 
+ e - q  -a(W = 0)- w)+,a(0)]+O(F).  (5.3) 

At t = 0 there is a possibility for A 9 1 of a rapid adjustment interval where the 
particle accelerates to  match the surrounding flow conditions. This transient effect 
appears in (5 .3)  through the terms in exp (-At). It is also possible to specify an initial 
particle velocity so as to  eliminate this rapid adjustment to  the desired order of 
accuracy. Since we are interested in the long-term average properties of the particle 
motion, the choice of initial velocity conditions has no special significance. Thus we 
postulate 

V(t = 0) = W+u( Y(t = O),  t = O),  (5.4) 

1 
(5.5) I,: A 

1 
A 

so that 
Y(t) = Y(t = O)+-f i ( t  = 0)+ Wt+ E(t')dt'--&(t), 

and the motion is on a timescale of O(t) or slower. 
Anew differential equation for the particle motion is now obtained by differentiating 

(5.5) : 

(5.6) 
d Z' 1 di2 
dt A dt . 
-= W + & ( f ) - - -  

The time derivatives dfi/dt also depends on Y(t) and must be expanded in powers 
of 1/A, 

Y(t )  

= (%+ ( w+ u( Y(t), t ) )  * vu 

The final form of the equation of motion is, correct to O(l /A) ,  

d Y  1 au 
dt ,4 at 
- = w+ u( Y(t),t) --(-+ ( w+ u( Y(t).t)) . vu (5.7) 

This equation is first order and is simpler than the original second-order equation. 
The equation (5.7) is also accurate up to times t of O(A)  since the new equation is 
formulated as a new fully non-linear equation of motion that is to be solved 
numerically or otherwise. These results may be verified by a formal multiple-scale 
analysis and may be extended to higher-order terms. 

The main advantage of (5.7) is that  the velocity of the particle is completely 
specified by its instantaneous position. It is possible to define a particle velocity field 
u(X,t), as was done in 93, with 

d Y  
dt 
- = u(x = Y(t),t), 

u(x,t) = U ( X , t ) +  w+- -++u'Vu+ w*vu (5.9) 
A ("" at 



458 M. R. Maxey 
The distinction with the previous situation, where there was no particle inertia, is 
that for finite values of A the particle flow field is compressible and that 

(5.10a) 

(5.10b) 

The divergence of the particle velocity field is positive in regions of high vorticity 
or low strain rate, and negative in regions where the strain rate dominates. Thus 
particles will tend to accumulate in regions of high strain rate or low vorticity. This 
also may be seen intuitively by considering a particle in a simple plane vortex flow 
with circular streamlines. If the particle were to follow the circular streamlines the 
effect of particle inertia would be to produce a drift outwards and the particle would 
spiral away from the vortex. Similarly in the pure straining flow near a stagnation 
point, the streamline curvature is reversed and inertia will cause the particle to drift 
towards the stagnation point. 

One way to obtain the particle-averaged velocity statistics in homogeneous, 
stationary turbulence is to release a large number of particles, N o ,  with an initially 
uniform distribution of the particles over some large volume Q,. The average particle 
velocity for example may be found by determining V( t )  for each particle and then 
averaging over all the particles. This procedure may be repeated, if desired, to further 
obtain an ensemble average. The two averaging processes, though, should be 
equivalent because of the spatially ergodic nature of homogeneous, stationary 
turbulence provided that No and 52, are chosen to be large enough. Furthermore, the 
ensemble-averaged results should be independent of the initial particle position. The 
particle number density n(x,  t )  is defined as the number of particles per unit volumet 
and is specified in the weak-inertia approximation by the 'conservation of particles' 
equation an 

-+V*(vn)  at = 0, (5.1 1) 

where the initial number density n(x,O) is specified and the possibility of particle 
interactions is excluded. In  this manner then ensemble averaging and particle 
averaging may be combined to give, at  some time t after the particle release, 

(5.12) 

where the integration volume is sufficiently large to contain all the particles and 
n(x ,  t )  d3x represents the number of particles in the small volume d3x at the point 
x at time t .  

A similar but more profitable approach is to take a fixed sample volume Q 
contained in Q, and to sum only over those particles contained in 0. The 
corresponding estimate of the particle-averaged settling velocity is 

(5.13) 

t In reality n ( x , t ) / N , ,  is the probability-density function of particle position for a particle 
released a t  some random location in 0,. Each particle is introduced independently of the others 
with the same initial probability density. 
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The sample volume 52 should meet two requirements. First, the volume 52, and hence 
Q,, should be large enough that the total number of particles in 52 remains close to  
the initial value of no 52. Particles may enter or leave the sample volume only across 
the boundary surface and with a finite velocity, less than V,,, say. The number of 
particles in 52 at some finite time t later on will be 

Jsan(x,t)d3x = 52n0+0(52~ Vmaxtno). (5.14) 

The relative error from neglecting the flux of particles in or out of 52 may be made 
arbitrarily small for large enough 52. Secondly, the sample volume 52 should be a 
sufficiently small part of Q, that  any particle trajectory included in 52 at time t 
originated within 52,. Again this is possible because of the finite particle velocities, 
but the maximum possible size for 52 will shrink with time. 

The equation of particle number density may be solved, a t  least formally, since 
from (5.11) 

dn an 
- = --+v*Vn = -nV- v 
dt at 

(5.15) I t 
and so n(x,t)  = n(Y(O;x,t),O) exp{ -~,V.v[Y(t’;x,t)t’]dt’ , 

where the particle trajectory Y(t’; x,t) is the solution of (5.8) satisfying the condition 
at  time t that  

The second requirement on 52 ensures that if the point x lies within the sample 
volume at time t then the initial point of the trajectory Y(O; x, t )  lies within 52, and 
the initial number density is simply no. The results (5.14) and (5.15) when combined 
with (5.13) give the estimate of particle-averaged settling velocity based on the 
samde volume SZ as 

Y(t;x,t) = x. 

This may be combined with an ensemble average to obtain 

( V ( t ) )  = hJ (v(x,t) exp{ - ~ ~ V . v [ Y ( t ’ ; x , t ) . t ’ ] d t ’ } ) d 3 x .  (5.16) 
sa 

In  a turbulent flow the effect of weak particle inertia should not lead to  singular 
accumulations of particles and the number density n(x,  t )  will deviate only slightly 
from its initially uniform value no. Thus the approximation of (5.15) to  0(1/A) is 

V*v[Y(t’;x,t),t’]dt’ (5.17) 

The long-term, average, particle-settling velocity obtained by substituting for v from 
(5.9) into (5.16) and using the approximation (5.17) is 

t 1 
(V(t)) = W+n <u(x.t))d3x-1S (~(x,t)V*v(Y(t’;x,t),t‘])dt’d~x, (5.18) 

for sufficiently large t. There is no need to include a term for (duldt) since this is 
zero for large times. 

The first volume integral in (5.18) reduces simply to  U,, the value of the Eulerian 
mean fluid velocity (u (x ,  t ) )  which is spatially uniform in homogeneous turbulence. 
If the particle velocity field were incompressible and V * V  vanished then (5.18) would 

I 5 2 0 0  
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reduce to Lumley’s result (Lumley 1962) quoted in $2.2. However, due to particle 
inertia V * v  is non-zero and the second volume integral makes a net contribution to 
( V ( t ) ) .  It is this term that leads to  changes in the particle-settling velocity. The 
correlation contained in the second integral of (5.18) is, from (5.10a), 

(u(x , t )V.u[  Y ( t ’ ; x , t ) , t ’ ] )  = - - ( u ( x , t ) ( ~ ~ ) l  1 ). (5.19) 

A ax, / Y ( t ’ ,  x, t )  

This velocity correlation is evaluated along the particle trajectory Y(t’;  x ,  t ) ,  which 
itself fluctuates with the turbulence. However, the fixed reference point for the 
trajectory is the point x at time t ,  rather than the initial position of the particle, so 
that for homogeneous turbulence this ensembled-averaged correlation will be 
independent of the choice of x .  Again the volume integration may be eliminated with 
the final result that  the long-term average particle velocity is 

(5.20) 

These preceding results illustrate the basic reason why the 1 -point aerosol-particle 
velocity statistics differ from the corresponding Eulerian statistics. The departure of 
the average particle-settling velocity from the still-fluid value is determined by the 
accumulated bias of the particle trajectory towards regions of high strain rate or low 
vorticity and whether or not this bias is correlated with fluctuations in the local fluid 
velocity. Since i t  is the accumulated bias that  is important, quite a large effect on 
the velocity statistics is possible even for large values of A .  This was observed in the 
simulations where i t  was noted in $3  that  (V,) remained substantially the same while 
the fluctuations in the particlefluid slip velocity W‘ decreased markedly with larger 
values of A .  I n  certain situations, as in the cellular-flow-field computations of Maxey 
& Corrsin (1986), this bias may lead to singular accumulations of particles in 
narrowly confined regions. This is unlikely to  occur in a turbulent flow though, 
because of the limited spatial and temporal correlations of the turbulence. 

This bias of the trajectories is peculiar to motion in a non-uniform fluid flow and 
represents an important aspect of particle inertia. The more commonly noted effects 
of particle inertia - see for example Tchen (1947) - mag equally be found in a 
uniform but unsteady flow field. I n  this situation particle inertia simply limits the 
response of the particle velocity to higher-frequency fluctuations in the flow field and 
introduces a phase lag in the response. An analysis which supposes that u( Y(t) ,  t )  is 
somehow prescribed as a time series ignores the nonlinear coupling between the 
particle position and the local fluid velocity. 

6. Combined limits of weak inertia and rapid settling 
The result for the long-term average particle velocity (5.20) shows that the change 

in average settling velocity is determined by the integrated effect of the inertial bias 
towards regions of high strain rate or low vorticity, and the correlation of this with 
the turbulent-velocity fluctuations. While the integral in (5.20) may be expected to 
be non-zero in general, i t  remains an integral along particle trajectories and its 
evaluation requires computation of the individual trajectories, just as in the full 
simulations. Because of this path dependence the integral is non-zero even for a 
Gaussian random field. Some simpler estimates can be obtained for the asymptotic 
limit of rapid particle settling, where the basic particle trajectory is a straight 
vertical path with small deviat’ion due to the turbulence. The technique is the same 
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as developed in $4. The equation of particle motion, approximated for small particle 
inertia (5.7), is solved by successive approximation for W 9 1 with the end condition 
that a t  time t the particle position is x. The approximate particle trajectory 
corresponding to (4.1) is 

FO’(t’) = x+ W(t’-t) ,  
t 

t’ 
F1)(t’) = - u(x = Fo)(t”), t”) dt” 

Additional terms of order 1/A are neglected. 
These two terms are enough to give the approximate results for weak particle 

inertia that correspond to (dYc3)/dt) and (dF4)/dt), discussed in $4. There are no 
terms corresponding to (dFl)/dt)  or (dF2)/dt)  since the effect of a mean flow is 
already accounted for in (5.20) and the condition of homogeneous turbulence is 
already included in the derivation. The approximate change in settling velocity at 
lowest order is 

( V p )  =flt(Ui(X,t)(- 0 ax, l f i o ) ( t , ) )  dt’’ (6.3) 

which is the counterpart of (4.10). The next lowest contribution is 

which is the counterpart of the results in Appendix B. A Taylor-series expansion 
about the vertical path Fo) is used to evaluate the inertial bias term and u(t”) denotes 
the fluid velocity u evaluated at position F0)(t”) a t  time tN. 

These expressions for (V9) and ( V4)) are much simpler and more easily 
understood than the full forms given earlier. The result for ( V3)) depends on the 
two-point, Eulerian triple-velocity correlations. For general homogeneous turbulence 
these are non-zero, but will vanish for a Gaussian random field. The net effect of these 
correlations is also zero for isotropic turbulence because of the special symmetry 
properties. This may be seen by writing the inertial bias term as scalar S 

and the triple correlation as 

where x’ = F0)(t’) and the separation vector (xl-x) is W(t’-t). The overall 
correlation (6.6) is an isotropic vector field that must satisfy incompressibility. The 
combination of these conditions ensures that the correlation is zero (Batchelor 1953) 
and so ( V3)) is zero for isotropic turbulence. In  view of this we may expect that the 
results found for the Gaussian random-flow simulations will be quite similar to those 
that would be observed in isotropic turbulence. 

The expression for ( V4)’>, (6.4), depends on the three-point, Eulerian four-velocity 
correlations. These can be estimated for the Gaussian random flow using the 
procedures given in Appendix B and expressing the result in terms of second-order 
velocity correlations, to give finally the simplified result 

(V$‘”) = - ~ ~ ~ d 7 j ~ d 7 ’ ~ ~ ( 7 , 7 ’ , 7 ’ , t ) ,  (6.7) 
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where the vector H i s  defined by (B9) and (B11) of Appendix B. A comparison of 
this result with the full expression given in $4 (see figure 7) ,  shows that the 
approximation for weak particle inertia is accurate to within 1096 for A 3 7 .  This 
approximation for weak inertial effects is thus a useful approach for invest,igating 
the average statistics of particle motion. 

These results for isotropic turbulence also show that i t  is the variations in the 
inertial bais term S as opposed to its absolute value that are important. The result 
(6.4) can be rewritten as 

Where the variation A S  in inertial bias is the difference between S evaluated on the 
fluctuating trajectory and S evaluated along the vertical path Fa) 

AS(t’) = F1) ( t ’ )*VS( Va)(t’), t ’ ) .  (6.9) 

As the particle settles vertically the turbulence produces fluctuations in the particle 
path which are weighted according to the corresponding fluctuations of A#, dependent 
on the local rate of strain or vorticity. The correlation of these fluctuations with 
u(x , t )  determines the overall effect. The net result depends on the structure of the 
turbulent-velocity fluctuations, and these must be investigated in each context. 
Simple arguments about particles spending more time in updraughts than in 
downdraughts do not apply. The gravitational settling velocity W specifies a 
preferred direction, and as W increases limits the time over which the velocities in 
(6.4) remain correlated. For large values of W the correlations are limited by the 
spatial structure and only values oft’, and hence t”, within O(L/  W )  of t  are relevant, 
where L is an appropriate integral lengthscale. Conversion of the integral (6.4) to an 
integral over spatial variables, using (6.1) and ignoring time variations in the flow 
field, shows that ( n4)) decreases as 0(W2) for large values of W. 

7. Concluding remarks 
The simulation results and asymptotic analyses show that there is no reason to 

expect aerosol particles to  settle a t  the same rate in homogeneous turbulence with 
zero mean flow as in still fluid. Indeed, at least in the context of random flow fields 
with Gaussian statistics, the particles are shown to  settle more rapidly over a wide 
range of conditions. The important mechanism for this is the effect of particle inertia 
and the bias this produces in the particle trajectories, for each realization of the 
turbulent flow, towards regions of high strain rate and/or low vorticity. The actual 
net effect of this bias on particle-settling velocities in a turbulent flow depends on 
the dynamics of the turbulence and the velocity correlations that naturally evolve. 

The results presented here are preliminary in nature, and i t  remains to be seen 
what changes in settling velocity are observed in either experiments or direct 
simulations of homogeneous turbulence. I n  view of the results of the previous section 
for rapid particle settling and weak particle inertia, which show that triple correlations 
have no net effect, qualitatively similar results should be observed. Further, the 
techniques developed in $ 5  for analysing small inertia effects can equally be applied 
to other one-point particle statistics than the average settling velocity. They may 
be used for example to investigate mean-square fluctuations in particle velocity or 
in the relative velocity of the particle to the surrounding fluid. 
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or the incompressibility of the flow. I n  fact, all the terms in the first integral of (B 1) 
cancel in this fashion. From the second integral only one term remains and so finally 

This simplifies for the same reasons and only one term makes a final contribution, 

(um(7”)-)}. axt ax, (B5) 

In  the same manner the third group may be simplified and in fact 

These component terms (B3) and (B5) combined give the value of (dI’i4)/dt) as 

d7” $(7 - 7’ )  $(7’ - 7”)  Hi (7,7”,  7’ ,  t )  
+ J 0 d7’ J 0 

where the property of homogeneity is used to rearrange the derivatives in (B3) and 
Hi is defined to be 

( ~ ~ ( 7 ” ) ~ ) .  axj axk (B8) 

This correlation may be simplified further in the context of isotropic turbulence, 
using the two-point correlation tensor of (2.14), (2.15), 

where the correlations are evaluated for 

s = (7 ’ -7)  w, r = ( t -7” )  w 
The final desired result is for H3(7,7’ ,7’ ’ , t )  with W = ( O , O ,  W ) ,  and in view of (B10) 
this means that s = (0.0,s sgn (7 ’ -7 ) )  

and r = (O,O,r sgn ( t -7 ’7 ) .  
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Some manipulation then leads to the final result for H ,  

465 

a 
as H3(7,7’,7”,t) = sgn (7’--7) f (r , t -7”)- f (s17’-7)  

R E F E R E N C E S  

BATCHELOR, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press. 
CLIFT, R . ,  GRACE, J. R. & WEBER, M. E. 1978 Bubbles, Drops and Particles. Academic. 
CSANADY, G. T. 1963 Turbulent diffusion of heavy particles in the atmosphere. J .  Atrnos. Sri .  20, 

KRAICHNAN, R. H .  1970 Diffusion by a random velocity field. Phys. Fluids 13, 22-31. 
LTTMLEY, ,J. L. 1962 The mathematical nature of the problem of relating Lagrangian and Eulerian 

statistical functions in turbulence. In MPcanique de la Turbulence (ed. A. Favre), pp. 17-26. 
Paris, CRNS. 

MAXEY, M. R.  & CORRSIN. S. 1986 Gravitational settling of aerosol particles in randomly oriented 
cellular flow fields. J .  A m o s .  ,Ski., 43, 1112-1134. 

MAXEY. M. R. & RILEY, J .  J. 1983 Equation of motion for a small rigid sphere in a nonuniform 
flow. Phys. Fluids 26, 883-889. 

MEEK, C. C. & JONES, B. G. 1973 Studies of the behaviour of heavy particles in a t’urbulent fluid 
flow. J .  Atmos. Sci .  30, 239-244. 

NIR, A. & PISMEN, L. M. 1979 The effect of steady drift on the dispersion of a particle in turbulent 
fluid. J .  Fluid filech. 94, 369-381. 

PRUPPACHER, H. R. & KLETT, J. D. 1978 Microphysics of Clouds and Prrcipitation. Reidel. 
REEKS, M. W. 1977 On the dispersion of small particles suspended in an isotropic turbulent fluid. 

J .  Fluid Mech. 83, 529-546. 
REEKS, M. W. 1980 Eulerian direct interaction applied to the statistical motion of particles in 

a turbulent fluid. J .  Fluid Mech. 97, 569-590. 
RICE, J. R. 1983 Numerical Methods, Xoftu,are and Analysis: I.M.S.L. Reference Edition. 

McGraw-Hill. 
RILEY, J. J. 1971 Computer simulations of turbulent dispersion. Ph.D. thesis., The Johns Hopkins 

University, Baltimore. 
RILEY, J. J. & PATTERSON, G. S. 1974 Diffusion experiments with numerically integrat,ed 

isotropic turbulence. Phys. Fluids 17, 292-297. 
SNYDER, W. H. & LUMLEY, J. L. 1971 Some measurements of particle velocity autocorrelation 

functions in a turbulent flow. J .  Fluid Mech. 48, 41-71. 
TCHEN, C. M. 1947 Mean value and correlation problems connected wit’h the motion of small 

particles suspended in a turbulent fluid. Ph.D. thesis, Delft; The Hague, Martinus Nijhoff. 
TENNEKES, H. & LUMLEY, .J. L. 1972 A First Course in Turbulence. M.I.T. Press. 
WELLS, Ril. R.  & STOCK, D. E .  1983 The effects of crossing trajectories on the dispersion of 

YUDINE, M. I. 1959 Physical considerations on heavy particle diffusion. Adz). Geophys. 6, 185-191. 

20 1-208. 

particles in a turbulent flow. J .  Fluid Mech. 136, 31-62. 




